~			
Seat	No.: ₋	GUJARAT TECHNOLOGICAL UNIVERSITY	
		BE - SEMESTER-IV(NEW) - EXAMINATION - SUMMER 2019	
Sub	ject	Code:2141906 Date:15/05/20	019
	•	Name: Fluid Mechanics	
		2:30 PM TO 05:00 PM Total Marks:	70
Instr	uction 1.	ns: Attempt all questions.	
	2.	Make suitable assumptions wherever necessary.	
	3.	Figures to the right indicate full marks.	MARKS
Q.1	(a)	Sketch the velocity distribution and shear stress distribution across a	03
		section of the pipe for laminar flow.	
	(b)	Distinguish between: 1. Rotational and Irrotational flow 2. Laminar and Turbulent flow	04
	(c)	Explain bellow type pressure gauge.	07
	()		
Q.2	(a)		03
	(b)	differential manometer Explain the following terms: 1. Relative density 2. Kinematic viscosity 3.	04
	(0)	Cavitation 4. Vapour pressure	V -1
	(c)		07
		similarity.	
	(c)		07
Q.3	(a)	Explain one, two and three dimensional flow.	03
	(b)	The space between two parallel plates 5 mm apart is filled with crude oil. A force of 2 N is required to dag the upper plate at a constant velocity of	04
		0.8 m/s. the lower plate is stationary. The area of the upper plate is 0.09	
		m ² . Determine (1) the dynamic viscosity and (2) the kinematic viscosity of	
	(a)	the oil in stokes if the specific gravity of the oil is 0.9. Derive an equation for continuity equation for 3D flow and reduce it for	07
	(c)	steady, incompressible 2D flow.	U /
		OR	
Q.3	(a)	Explain the term Vorticity. Obtain Darcy-Weisbach formula for head loss due to friction.	03 04
	(b) (c)	A solid cylinder 2 m in diameter and 2 m high is floating in water with its	07
	()	axis vertical. If the specific gravity of the material of cylinder is 0.65.	
		Find its metacentric height. State also whether equilibrium is stable or unstable.	
		unstable.	
Q.4	(a)		03
	(b)	A horizontal venturimeter with inlet diameter 200 mm and throat diameter 100 mm is used to measure the flow of water. The reading of	04
		the differential manometer connected to the inlet is 180 mm of mercury.	
		If the co-efficient of discharge is 0.98. Determine the rate of flow.	
	(c)	Deduce the expression of discharge over a rectangular notch. OR	07
		ON .	

03 04

(a) What do you understand by frictional resistance offered by pipe?
(b) Water flows at the rate of 0.015 m³/s through a 100 mm diameter orifice

contraction Cc=0.6 and Cv=1.

used in a 200 mm pipe. What is the difference in pressure head between the upstream section and venacontracta section? Take co-efficient of

Q.4

	(c)	Derive Euler's equation of motion for flow along a stream line. Obtain Bernoulli's from it. State assumptions clearly.	07
Q.5	(a) (b) (c)	Compare rectangular and triangular notches. Explain propagation of sound waves for Sub sonic and Sonic flow. The resistance force R of a supersonic plane during flight can be considered as dependent upon the length of the aircraft l, velocity V, air viscosity μ , air density ρ and bulk modulus of air k. explain the functional relationship between the variables and the resisting force.	03 04 07
0.5	()	OR	0.2
Q.5	(a)	State the momentum correction factor and list the momentum correction factor for different flow in pipes.	03
	(b) (c)	Explain Reynold's experiment with neat sketch. Prove that the velocity of sound wave in compressible fluid is given by $C = \sqrt{k\rho}$	04 07

		doubled from Study Co.	